

Overview of Beam Diagnostics

Tom Shea (ORNL) USPAS and University of New Mexico Albuquerque NM, June 23-26, 2009

Material adapted from presentations by many people in the accelerator community, particularly: P. Forck, S. Henderson, and S. Cousineau.

Accelerator and Beam Diagnostics

Outline

- Overview of Accelerators
 - History and types of accelerators
 - Performance trends and relevant diagnostics
- Overview of Diagnostics
 - Role and Considerations
 - Physics and Technologies
 - Inventory of diagnostic systems
 - Scale

Accelerator Inventory

World wide inventory of accelerators, in total 15,000. The data have been collected by W. Scarf and W. Wiesczycka (See U. Amaldi Europhysics News, June 31, 2000)		
Category	Number	
Ion implanters and surface modifications	7,000	
Accelerators in industry	1,500	
Accelerators in non-nuclear research	1,000	
Radiotherapy	5,000	
Medical isotopes production	200	
Hadron therapy	20	
Synchrotron radiation sources	70	
Nuclear and particle physics research	110	

Acceleration Techniques

 $\Delta W = q V_0$

Two approaches for accelerating with timevarying fields (to get above 20 MeV/n or so)

Linear Accelerators

Use many accelerating cavities through which the particle beam passes once: Linacs

Circular Accelerators

Use one or a small number of Radiofrequency accelerating cavities and make use of repeated passage through them. This approach is realized in circular accelerators: Cyclotrons, synchrotrons and their variants

Linac Concept

- Ising and Wideroe suggested to repeatedly apply a much smaller voltage in a linear accelerator by using time-varying fields
- In this way, a high particle beam energy could be attained by repeatedly applying voltage "kicks"

Modern Linacs

- The two largest proton linear accelerators are the LANSCE linac at Los Alamos (800 MeV) and the Spallation Neutron Source Linac at ORNL (1000 MeV)
- Largest linac is at SLAC; One of the largest under consideration is ILC (31 km total length)
- Electron and hadron linacs now will look similar: most recent and future projects have settled on superconducting cavities.

ILC

- 500 GeV lepton machine
- peak luminosity of 2e34

Circular Machines

Lawrence's Application of Wideroe's Idea: The Cyclotron

RF source

The synchrotron concept - ramped magnets for constant radius - was first proposed in 1943 by the Australian physicist <u>Mark Oliphant.</u>

Strong Focusing Synchrotrons

The synchrotron concept was first proposed in 1943 by the Australian physicist Mark Oliphant. "Strong" or "Alternating Gradient" focusing concept first applied to particle accelerators by Courant, Livingston and Snyder. First AG synchrotron: Cornell in 1954.

CERN PS (~28 GeV) started operations in 1959.

Brookhaven AGS (~33 GeV) under construction in 1957. Started operations in 1960.

Energy

Colliders

 Circular or linear, common goal is to maximize center-ofmass energy available for particle production

Bruno Touschek built the first successful electron-positron collider, ADA, at Frascati, Italy (1960)

Eventually, went up to 3 GeV

tor and Beam Diagnostics

Collider Figure of Merit: Luminosity

 $4\pi\sigma_x\sigma_v$

Luminosity = number of interactions per unit area per unit time:

$$L = f \int_{-\infty}^{\infty} dx_1 dy_1 dx_2 dy_2 I_1(x_1, y_1) I_2(x_2, y_2) \delta\left(x_1 - x_2\right) \delta\left(y_1 - y_2\right)$$

$$\int_{-\infty}^{\infty} n_1 n_2 \qquad \qquad n_1, n_2 = \text{particles per bunch}$$

f = frequency of bunch collisions

Luminosity Trends

Luminosity

Particle counters

- Direct indicator of performance
- Profile (Uli)
 - and for hadron facilities, emittance preservation

• Position monitors (John)

- Near interaction point
- and for linear colliders:
 - approaching nanometer resolution cavity BPMs
 - feedback within a pulse

Increasing Intensity

High Intensity

- Demonstrate
 - Current Monitors, a.k.a BCM (Wim)
- Enable
 - Beam Loss Monitor, a.k.a BLM (Sasha)
 - Intensity limited by loss and attendant activation (~ 1 W/ meter for hands on maintenance)
 - Primary diagnostic input to Machine Protection System
- Survive
 - Non-interceptive devices, particularly Profile monitors (Ionization Profile Monitor, Laser Wire, etc...)

Secondary Beams

- Secondary beams of photons and neutrons
- Produced at or moderated to wavelengths appropriate for the study of materials and their properties
- Also, neutrinos, \bullet radioactive ion beams etc. for physics

Microelectromechanical Devices

Nanotube transistor

Quantum corral of 48 iron atoms

Accelerator-Based Light Sources

70 MeV electron synchrotron at General Electric, Schnectady, NY, 1947

Light Source Brightness

High Photon Brightness

- Brightness -> small electron beam emittance (small size)
 - Profile monitors (Uli)
- Position stability
 - ~10% of the small beam size
 - Position monitors, a.k.a. BPM (John)
 - orbit feedback

Accelerator-Based Neutron Sources

- High-energy protons are used to generate neutrons from a heavy metal target via the spallation process
- Several labs, ISIS(RAL, UK), LANSCE (Los Alamos), SNS (ORNL), J-PARC (Japan) operate or are building these types of machines
- They use ~1 GeV protons accelerated by linacs or synchrotrons

Neutron Source Performance

Reactor-based source:

- neutrons produced by fission reactions
- Continuous neutron
 beam
- 1 neutron/fission

Accelerator based source:

- 25 neutrons/proton for Hg
- A pulsed beam with precise t₀ allows neutron energy measurement via time-of-flight

(Updated from Neutron Scattering, K. Skold and D. L. Price: eds., Academic Press, 1986)

Reactors have reached the limit of heat removal from the core Pulsed sources have not yet reached their limit and hold out the promise of higher intensities: **Proportional to proton beam intensity on target.**

High Neutron Flux

- High intensity proton facility
 - include usual diagnostics relevant for high intensity machines
- H- in linac
 - allows certain type of laser profile and laser emittance diagnostic (Tom)
- Targets (solid and liquid) operate near engineering limits
 - Target Profile monitor (Uli)

Role of Diagnostics

- Accelerator performance improvement as a scientific investigation
- 3 approaches, in concert:
 - Numerical (high accuracy simulations)
 - Analytical (reveal scaling laws, fundamental principles)
 - Experimental (key role for diagnostics)

Considerations

- Three types of demands leads to different installations:
 - Quick, non-destructive measurements leading to a single number, simple plots, or machine protect input.
 - Reliable technologies
 - Example: Current measurement by transformers.
 - Daily check, simple diagnosis and mode changes
 - Example: Profile measurement, in some cases destructive
 - Complex diagnosis, commissioning and accelerator development
 - The instrumentation might be destructive and complex.
 - Example: Emittance determination.
- Non-destructive ('non-intercepting') methods are preferred
 - The beam is not influenced
 - The instrument is not destroyed.

Layout

System Integration (Wim)

 also, environmental considerations: electromagnetic interference, radiation, cryogenic environment, ultra-high vacuum, etc.

Underlying Physics (I)

Beam diagnostics covers full spectrum of physics and technology; calls for experts on all these fields

- Accelerator physics for system specification
- Electro-magnetic influence by moving charges:
 - −→ classical electro-dynamics, voltage and current measurement, low and high frequencies
 - Examples: Faraday cups, beam transformers, pick-ups
- Emission of photons by accelerated charges:
 - \rightarrow optics, optical techniques (from infrared to x-ray)
 - Examples: Synchrotron radiation monitors

Underlying Physics (II)

- Interaction of particles with photons:
 - \rightarrow optics, Lasers, particle detectors
 - Examples: laser scanners, polarimeters
- Coulomb interaction of charged particles with matter:
 - \rightarrow atomic and solid state physics, current measurement, optics, particle detectors
 - Examples: scintillators, viewing screens, ionization chambers, secondary electron monitors, residual gas monitors
- Nuclear- or elementary particle physics interactions
 - \rightarrow nuclear physics, particle detectors
 - Examples: beam loss monitors, polarimeters, luminosity monitors

Diagnostic System Inventory (I)

Beam quantity		LINAC, transfer line	Synchrotron
current I	general	transformer (dc, pulsed)	transformer
		Faraday cup	
	special	particle detector	normalized pick-up signal
position x_{cms}	general	pick-up	pick-up
	special	using profile measurement	cavity excitation (e^-)
profile x_{width}	general	SEM-grid, wire scanner	residual gas monitor
		viewing screen, OTR-screen	wire scanner
			synch. radiation (e^-)
	special	grid with ampl. (MWPC)	
trans. emittance	general	slit grid	residual gas monitor
ϵ_{trans}		quadrupole scan	wire scanner
	special	pepper-pot	transverse Schottky pick-up

Diagnostic System Inventory (II)

Beam quantity		LINAC, transfer line	Synchrotron
momentum	general	pick-up (TOF)	pick-up
p and $\Delta p/p$		magn. spectrometer	
	special		Schottky noise pick-up
bunch width $\Delta \varphi$	general	pick-up	pick-up, transformer
			wall current monitor
	special	particle detector	streak camera (e^-)
		secondary electrons	
long. emittance	general	buncher scan	
ϵ_{long}		magn. spectrometer	
	special	TOF application	pick-up + tomography
tune, chromaticity	general		exciter + pick-up
Q, ξ	special		transverse Schottky pick-up
beam loss r_{loss}	general	particle detector	
polarization P	general	particle detector	
	special	Compton scattering with laser	
luminosity \mathcal{L}	general	particle detector	

Relative Scale

The cost of diagnostic is about 3 to 10 % of the total facility cost:

- \simeq 3 % for large accelerators or accelerators with standard technologies
- \approx 10 % for versatile accelerators or novel accelerators and technologies.

The amount of man-power is about 10 to 20 %:

- Diverse physics and technologies
- High performance data acquisition; complex integration and data analysis
- Accelerator improvements call for new diagnostic concepts.

To Commission a Low Energy Linac

To Commission a Collider

Position monitors	48 measurement planes in transfer line 667 planes total in collider rings
Loss monitors	120 ion chambers in the transfer line 400 ion chambers in the collider tunnel
Ionization profile monitors	One horizontal and one vertical per ring
Collider ring current monitor	One DCCT per ring
Wall current monitors	One per ring
Transverse kickers	Two kicker units per ring (each provides horizontal and vertical deflection)
Schottky cavities	One per ring (each provides horizontal, vertical and longitudinal signals)
Transfer line beam profile monitors	12 phosphor screens muxed into 4 video channels
Transfer line intensity monitors	Five integrating current transformers

Summary

- Sensory system for a particle accelerator
- Critical role in performance improvement
- Plenty of interesting technology
 - this week and beyond...

